If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2=719.6t
We move all terms to the left:
4.9t^2-(719.6t)=0
We add all the numbers together, and all the variables
4.9t^2-(+719.6t)=0
We get rid of parentheses
4.9t^2-719.6t=0
a = 4.9; b = -719.6; c = 0;
Δ = b2-4ac
Δ = -719.62-4·4.9·0
Δ = 517824.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-719.6)-\sqrt{517824.16}}{2*4.9}=\frac{719.6-\sqrt{517824.16}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-719.6)+\sqrt{517824.16}}{2*4.9}=\frac{719.6+\sqrt{517824.16}}{9.8} $
| 4x=x2 | | ½*9.8t^2=350*2.056t | | ½9.8t^2=350*2.056t | | 6(n+7)=66 | | ½9.8t^2=350*2.056 | | ,0.025x+5.327=0.010x+5.318 | | 8^x+8^x+8^x+8^x=128 | | 12b^2-9b-6=0 | | 18=6u-4u | | √5x-6+5/2=4 | | 13x=69 | | 5/6x=246 | | 3-7xx=3 | | x/2-4x+3(x-3)=8 | | 7-5x+4x=3 | | 7-5x+4xx=3 | | (x-5)^2-64=0 | | (3/4)m+6=18 | | 3/4m+6=18 | | -3(4s-1)-3=3(7s+3)-3 | | -2m-14=2m-6(1+2m) | | -7+(t+2)=7 | | -2+12=m-4 | | 4(u-3)=8u+2-2(-5u-2) | | -(5x+7)=28+2x | | 5-x=5(7x+1) | | 11+5x=3(-7+7x) | | 10x-2-6x=3x+2-x | | x^2=x*4 | | 64=64t+18t^2 | | 14w=5 | | 18n=20 |